Supercompact cardinals and failures of GCH Fusion and large cardinals

Radek Honzik

Department of Logic Charles University in Prague

radek.honzik@ff.cuni.cz
http://logika.ff.cuni.cz/radek

Hejnice, February 01, 2012

Theorem (Friedman, H., 2011)

(GCH) Assume $\kappa < \lambda$ are regular and κ is both λ -supercompact and λ^{++} -tall. Then there is a cofinality-preserving forcing P such that in V^P , κ is still λ -supercompact, GCH holds in $[\kappa, \lambda)$, but fails at λ .

Theorem (Friedman, H., 2011)

(GCH) Assume $\kappa < \lambda$ are regular and κ is both λ -supercompact and λ^{++} -tall. Then there is a cofinality-preserving forcing P such that in V^P , κ is still λ -supercompact, GCH holds in $[\kappa, \lambda)$, but fails at λ .

 λ is regular can be a successor, even a successor of a singular cardinal: for more concreteness, you may assume $\lambda = \kappa^{+\omega+1}$.

• Consequences for cardinal arithmetic.

Consequences for cardinal arithmetic.
 For instance if κ is λ-supercompact and GCH fails at some α ∈ [κ, λ], then it fails unboundedly often below κ.

Consequences for cardinal arithmetic.
 For instance if κ is λ-supercompact and GCH fails at some α ∈ [κ, λ], then it fails unboundedly often below κ.
 If κ is supercompact and GCH fails somewhere above κ, then GCH fails unboundedly often below κ.

Consequences for cardinal arithmetic.
 For instance if κ is λ-supercompact and GCH fails at some α ∈ [κ, λ], then it fails unboundedly often below κ.
 If κ is supercompact and GCH fails somewhere above κ, then GCH fails unboundedly often below κ.
 SCH holds above a supercompact.

Consequences for cardinal arithmetic.
 For instance if κ is λ-supercompact and GCH fails at some α ∈ [κ, λ], then it fails unboundedly often below κ.
 If κ is supercompact and GCH fails somewhere above κ, then GCH fails unboundedly often below κ.
 SCH holds above a supercompact.

• Probably necessary for consistency of interesting combinatorial statements (such as PFA or MM).

Consequences for cardinal arithmetic.
 For instance if κ is λ-supercompact and GCH fails at some α ∈ [κ, λ], then it fails unboundedly often below κ.
 If κ is supercompact and GCH fails somewhere above κ, then GCH fails unboundedly often below κ.
 SCH holds above a supercompact.

- Probably necessary for consistency of interesting combinatorial statements (such as PFA or MM).
- Lack of inner models leaves forcing as the only technique. Related open questions: lower bound in consistency strength; forcing together *L*-like properties + and non *L*-like properties (such as definable wellorder plus failure of GCH).

Assume throughout that $\kappa \leq \lambda$ are regular.

Definition

We say $j: V \to M$ with crit point κ is a λ -supercompact embedding if $\lambda < j(\kappa)$ and $^{\lambda}M \subseteq M$.

Assume throughout that $\kappa \leq \lambda$ are regular.

Definition

We say $j : V \to M$ with crit point κ is a λ -supercompact embedding if $\lambda < j(\kappa)$ and $^{\lambda}M \subseteq M$.

Definition

We say that an embedding $j: V \to M$ with critical point κ is λ -tall if $\lambda < j(\kappa)$ and ${}^{\kappa}M \subseteq M$.

Assume throughout that $\kappa \leq \lambda$ are regular.

Definition

We say $j : V \to M$ with crit point κ is a λ -supercompact embedding if $\lambda < j(\kappa)$ and $^{\lambda}M \subseteq M$.

Definition

We say that an embedding $j: V \to M$ with critical point κ is λ -tall if $\lambda < j(\kappa)$ and ${}^{\kappa}M \subseteq M$.

Notice that κ is measurable iff κ is $\kappa\text{-supercompact}$ iff κ is $\kappa\text{-tall}.$

Lemma

(GCH) Let κ ≤ λ be regular. Assume that κ is λ-supercompact and λ⁺⁺-tall. Then there exists j : V → M with critical point κ such that:
(i) ^λM ⊆ M;
(ii) λ⁺⁺ < j(κ) < λ⁺⁺⁺;
(iii) M = {j(f)(j''λ, α) | f : P_κλ × κ → V & α < λ⁺⁺}.

Lemma

(GCH) Let $\kappa \leq \lambda$ be regular. Assume that κ is λ -supercompact and λ^{++} -tall. Then there exists $j : V \to M$ with critical point κ such that: (i) ${}^{\lambda}M \subseteq M$; (ii) $\lambda^{++} < j(\kappa) < \lambda^{+++}$; (iii) $M = \{j(f)(j''\lambda, \alpha) \mid f : P_{\kappa}\lambda \times \kappa \to V \& \alpha < \lambda^{++}\}.$

Notice that f's above have domains of size λ . In particular if E is in M a dense open set in j(P) for some forcing $P \in V$, then E can be represented in V as a certain sequence $\langle D_i | i < \lambda \rangle$ of dense open sets in P.

Theorem

(GCH) Assume $\kappa < \lambda$ are regular and κ is both λ -supercompact and λ^{++} -tall. Then there is a cofinality-preserving forcing P such that in V^P , κ is still λ -supercompact, GCH holds in $[\kappa, \lambda)$, but fails at λ .

Theorem

(GCH) Assume $\kappa < \lambda$ are regular and κ is both λ -supercompact and λ^{++} -tall. Then there is a cofinality-preserving forcing P such that in V^P , κ is still λ -supercompact, GCH holds in $[\kappa, \lambda)$, but fails at λ .

In order to preserve supercompactness, we look for a forcing P such that:

- Adds new subsets of λ and is λ -closed.
- Allows an inductive construction of a decreasing sequence of conditions of length λ .
- Works for a successor λ .

Theorem

(GCH) Assume $\kappa < \lambda$ are regular and κ is both λ -supercompact and λ^{++} -tall. Then there is a cofinality-preserving forcing P such that in V^P , κ is still λ -supercompact, GCH holds in $[\kappa, \lambda)$, but fails at λ .

In order to preserve supercompactness, we look for a forcing P such that:

- Adds new subsets of λ and is λ -closed.
- Allows an inductive construction of a decreasing sequence of conditions of length λ .
- Works for a successor λ .

This points to fusion-based forcings.

Assume from now on that $\lambda = \lambda'^+$.

Definition

 $S(\lambda)$, λ -Sacks forcing, a collection of "naturally defined" perfect trees in $2^{<\lambda}$ with \leq equal to inclusion. $S(\lambda, \alpha)$ is the product with supports of size $\leq \lambda$.

Assume from now on that $\lambda = \lambda'^+$.

Definition

 $S(\lambda)$, λ -Sacks forcing, a collection of "naturally defined" perfect trees in $2^{<\lambda}$ with \leq equal to inclusion. $S(\lambda, \alpha)$ is the product with supports of size $\leq \lambda$.

"Natural" here means with cof ω -splitting.

Assume from now on that $\lambda = \lambda'^+$.

Definition

 $S(\lambda)$, λ -Sacks forcing, a collection of "naturally defined" perfect trees in $2^{<\lambda}$ with \leq equal to inclusion. $S(\lambda, \alpha)$ is the product with supports of size $\leq \lambda$.

"Natural" here means with cof ω -splitting.

In our case $\alpha = \lambda^{++}$, but since we consider a product (not an iteration), $\alpha > 0$ can be arbitrary.

Assume from now on that $\lambda = \lambda'^+$.

Definition

 $S(\lambda)$, λ -Sacks forcing, a collection of "naturally defined" perfect trees in $2^{<\lambda}$ with \leq equal to inclusion. $S(\lambda, \alpha)$ is the product with supports of size $\leq \lambda$.

"Natural" here means with cof ω -splitting.

In our case $\alpha = \lambda^{++}$, but since we consider a product (not an iteration), $\alpha > 0$ can be arbitrary. For $i < \lambda$ and $F_i \subseteq \alpha$ with $|F_i| < \lambda$ we define:

Definition

$$p \leq_{i,F_i} q \leftrightarrow p \leq q \& (\forall \beta \in F_i)^{i+1} 2 \cap p(\beta) = {}^{i+1} 2 \cap q(\beta).$$

Assume from now on that $\lambda = \lambda'^+$.

Definition

 $S(\lambda)$, λ -Sacks forcing, a collection of "naturally defined" perfect trees in $2^{<\lambda}$ with \leq equal to inclusion. $S(\lambda, \alpha)$ is the product with supports of size $\leq \lambda$.

"Natural" here means with cof ω -splitting.

In our case $\alpha = \lambda^{++}$, but since we consider a product (not an iteration), $\alpha > 0$ can be arbitrary. For $i < \lambda$ and $F_i \subseteq \alpha$ with $|F_i| < \lambda$ we define:

Definition

$$p \leq_{i,F_i} q \leftrightarrow p \leq q \& (\forall \beta \in F_i)^{i+1} 2 \cap p(\beta) = {}^{i+1} 2 \cap q(\beta).$$

A decreasing sequence under \leq_{i,F_i} of length λ , a **fusion sequence**, has the infimum – dubbed the **fusion limit**.

The final solution of	R. Honzik (Charles University)	Supercompacts and the continuum	Hejnice, February 2012	7 / 12
---	--------------------------------	---------------------------------	------------------------	--------

Basic fusion

To check $S(\lambda, \alpha)$ preserves λ^+ , we first fix a dimond sequence:

Definition Let us fix a \Diamond_{λ} sequence

$$\langle S_i \mid i < \lambda \& S_i \subseteq i \times i \rangle.$$

For every $A \subseteq \lambda \times \lambda$, the set $\{i < \lambda \mid S_i = A \cap (i \times i)\}$ is stationary.

Basic fusion

To check $S(\lambda, \alpha)$ preserves λ^+ , we first fix a dimond sequence:

Definition Let us fix a \Diamond_{λ} sequence

$$\langle S_i \mid i < \lambda \& S_i \subseteq i \times i \rangle.$$

For every $A \subseteq \lambda \times \lambda$, the set $\{i < \lambda \mid S_i = A \cap (i \times i)\}$ is stationary. Note that \Diamond_{λ} is implied by GCH at λ' .

Basic reduction lemma

Lemma (Basic reduction lemma)

Assume p is in $S(\lambda, \alpha)$ and $\langle D_i | i < \lambda \rangle$ is a sequence of dense open sets. Then there exists a condition $q \le p$, $q = fusionlim(p_i)_{i < \lambda}$, such that for any $i < \lambda$ and any $t \le q$ there exists j > i such that the restrictions of q and t to S_i are defined and both are in D_i .

Basic reduction lemma

Lemma (Basic reduction lemma)

Assume p is in $S(\lambda, \alpha)$ and $\langle D_i | i < \lambda \rangle$ is a sequence of dense open sets. Then there exists a condition $q \le p$, $q = fusionlim(p_i)_{i < \lambda}$, such that for any $i < \lambda$ and any $t \le q$ there exists j > i such that the restrictions of q and t to S_i are defined and both are in D_i .

Compare with the case when the cardinal is inaccessible:

Lemma (κ inaccessible, or ω)

Assume p is in $S(\kappa, \alpha)$ and $\langle D_i | i < \kappa \rangle$ is a sequence of dense open sets. Then there exists a condition $q \le p$, $q = fusionlimit(p_i)_{i < \kappa}$, such that if r is **any** thinning of q to stems of height i (on a certain < κ big subset of support of q), then r is in D_i .

Coherent sequences

Definition

Fix p and $F = \bigcup F_n \subseteq \text{support}(p)$, with $|F_n| < \lambda$ for every $n < \omega$. Let $i < \lambda$ have cof ω and let $\langle i_n | n < \omega \rangle$ be cofinal in i. We say that a sequence $\langle S_{i_n} | n < \omega \rangle$ is **coherent** with respect to p and F if the family $\{S_{i_n}(\delta) \upharpoonright i_{n-1} | \delta(n) < n < \omega\}$ determines an element of ⁱ2 for each δ in F. (Where $\delta(n)$ is the least n such that δ is in F_n .)

Coherent sequences

Definition

Fix p and $F = \bigcup F_n \subseteq \text{support}(p)$, with $|F_n| < \lambda$ for every $n < \omega$. Let $i < \lambda$ have cof ω and let $\langle i_n | n < \omega \rangle$ be cofinal in i. We say that a sequence $\langle S_{i_n} | n < \omega \rangle$ is **coherent** with respect to p and F if the family $\{S_{i_n}(\delta) \upharpoonright i_{n-1} | \delta(n) < n < \omega\}$ determines an element of i^2 for each δ in F. (Where $\delta(n)$ is the least n such that δ is in F_n .)

Notice that if $cf(\lambda') > \omega$, then the number of all sequences $\langle i_n | n < \omega \rangle$ cofinal in *i* is at most λ' , and so is the number of resulting coherent sequences. (If $cf(\lambda') = \omega$, a little more needs to be done.)

Rich reduction lemma

Lemma (Rich reduction lemma)

Assume p is in $S(\lambda, \alpha)$ and $\langle D_i | i < \lambda \rangle$ is a sequence of dense open sets. Then there exists a condition $q \le p$, $q = fusionlim(p_i)_{i < \lambda}$, which is a basic reduction and moreover: for every i, if j > i has cofinality ω and j + 1 was a non-trivial stage of construction, then for every coherent sequence $\langle S_{j_n} | i < n \rangle$, q restricted to the nodes determined by this sequence (if this restriction makes sense) lies in D_i .

Rich reduction lemma

Lemma (Rich reduction lemma)

Assume p is in $S(\lambda, \alpha)$ and $\langle D_i | i < \lambda \rangle$ is a sequence of dense open sets. Then there exists a condition $q \le p$, $q = fusionlim(p_i)_{i < \lambda}$, which is a basic reduction and moreover: for every i, if j > i has cofinality ω and j + 1 was a non-trivial stage of construction, then for every coherent sequence $\langle S_{j_n} | i < n \rangle$, q restricted to the nodes determined by this sequence (if this restriction makes sense) lies in D_i .

Thus at such stages j we allow ourselves up to λ' many options (from the total number of up to $\lambda'^+ = \lambda$ many options) to thin out to D_i .

Lemma (Rich reduction lemma)

Assume p is in $S(\lambda, \alpha)$ and $\langle D_i | i < \lambda \rangle$ is a sequence of dense open sets. Then there exists a condition $q \le p$, $q = fusionlim(p_i)_{i < \lambda}$, which is a basic reduction and moreover: for every i, if j > i has cofinality ω and j + 1 was a non-trivial stage of construction, then for every coherent sequence $\langle S_{j_n} | i < n \rangle$, q restricted to the nodes determined by this sequence (if this restriction makes sense) lies in D_i .

Thus at such stages j we allow ourselves up to λ' many options (from the total number of up to $\lambda'^+ = \lambda$ many options) to thin out to D_i .

See blackboard for a "hand-waving proof" that this is enough to prove the theorem.

It was crucial for the proof that the **length of the fusion** in $S(\lambda, \lambda^{++})$ was equal to the **support** of $j : V \to M$ (the support of j equals the size of the domains of the relevant f's describing M). For instance, this technique does not work for $S(\kappa, \lambda^{++})$ – too short a fusion, too few clubs in κ .

It was crucial for the proof that the **length of the fusion** in $S(\lambda, \lambda^{++})$ was equal to the **support** of $j : V \to M$ (the support of j equals the size of the domains of the relevant f's describing M). For instance, this technique does not work for $S(\kappa, \lambda^{++})$ – too short a fusion, too few clubs in κ .

Question. Is there a κ -closed cofinality-preserving forcing P which adds new subsets of κ , but supports a "genuine" fusion of length μ for cardinals $\mu \in [\kappa, \lambda]$? One can use that κ is λ -supercompact.